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Current advances in neuromorphic engineering have made it
possible to emulate complex neuronal ion channel and intracellular
ionic dynamics in real time using highly compact and power-
efficient complementary metal-oxide-semiconductor (CMOS) ana-
log very-large-scale-integrated circuit technology. Recently, there
has been growing interest in the neuromorphic emulation of the
spike-timing-dependent plasticity (STDP) Hebbian learning rule by
phenomenological modeling using CMOS, memristor or other ana-
log devices. Here, we propose a CMOS circuit implementation of a
biophysically grounded neuromorphic (iono-neuromorphic) model
of synaptic plasticity that is capable of capturing both the spike
rate-dependent plasticity (SRDP, of the Bienenstock-Cooper-Munro
or BCM type) and STDP rules. The iono-neuromorphic model repro-
duces bidirectional synaptic changes with NMDA receptor-depen-
dent and intracellular calcium-mediated long-term potentiation
or long-term depression assuming retrograde endocannabinoid
signaling as a second coincidence detector. Changes in excitatory
or inhibitory synaptic weights are registered and stored in a non-
volatile and compact digital format analogous to the discrete
insertion and removal of AMPA or GABA receptor channels. The
versatile Hebbian synapse device is applicable to a variety of neu-
roprosthesis, brain-machine interface, neurorobotics, neuromi-
metic computation,machine learning, and neural-inspired adaptive
control problems.

iono-neuromorphic modeling ∣ rate-based synaptic plasticity ∣
silicon neuron ∣ subthreshold microelectronics ∣ VLSI circuit

Learning and memory are emergent animal behaviors governed
by activity-dependent neuronal adaptation rules in response

to changing environments. A putative neuronal mechanism of
learning and memory is Hebbian synaptic plasticity (1)—the
adaptive modification of excitatory synaptic strength following
paired activation of the pre- and postsynaptic neurons. Two clas-
sic paradigms for the induction of Hebbian synaptic plasticity in
the mammalian hippocampus and neocortex are rate-based plas-
ticity (2–4) [herein referred to as spike-rate-dependent plasticity
(SRDP)] and spike-timing-dependent plasticity (STDP) (5–7).
The SRDP induction protocols control presynaptic firing rate
in order to vary the sign and magnitude of synaptic plasticity (8):
a high-frequency (20–100 Hz) train of presynaptic pulses results
in long-term potentiation (LTP) of the synaptic strength, whereas
a low-frequency (1–5 Hz) train results in long-term depression
(LTD). These protocols are consistent with the theoretical learn-
ing rule (BCM rule) proposed by Bienenstock, Cooper, and Mun-
ro (9), in which the sign and magnitude of synaptic plasticity are
controlled solely by postsynaptic activity as determined by presy-
naptic firing rate: low postsynaptic activity weakens synaptic
efficacy and high postsynaptic activity strengthens it. By contrast,
the STDP induction protocol stipulates that precise timing of pre-
and postsynaptic activities determines the direction and strength
of synaptic plasticity: repeated pairings of a presynaptic stimulus
followed by a postsynaptic spike (prepost pairing, Δt > 0) results
in LTP, whereas reversing the order of pairing (postpre pairing,

Δt < 0) results in LTD (10). Mechanistically, both the SRDP and
STDP induction protocols elicit NMDA receptor (NMDAR)-
mediated intracellular calcium dynamics (4, 11, 12), which acti-
vate downstream processes that either up- or downregulate
synaptic strength through the insertion or removal of individual
excitatory AMPA receptor channels (13, 14). This common
mechanistic link suggests a possible underlying interrelationship
between these two seemingly distinct forms of Hebbian synaptic
plasticity (15).

In an attempt to reconcile the SRDP and STDP rules, several
computational models have been proposed (16–22). Currently,
there is general agreement that LTP can result from both SRDP
and STDP learning rules via postsynaptic NMDAR-mediated
coincidence detection of prepostynaptic activities. However, the
mechanism of timing-based LTD is less clear cut. Previous mod-
eling studies have shown that a STDP learning rule involving a
single postsynaptic coincidence detection mechanism as with LTP
may induce LTD not only within the expected LTD window with
postpre pairing (Δt < 0) but also beyond the LTP window with
prepost pairing (Δt > 0) (17, 23–25). In order to robustly repro-
duce the canonical STDP curve with a single postpre (Δt < 0)
LTD window, it has been proposed that a second coincident
detector may be required (23, 24). However, although many bio-
physical mechanisms and models of second coincidence detection
for STDP have been proposed (25, 26), a general computational
model that consistently unifies the SRDP and STDP rules based
on an experimentally demonstrated second coincident detector
is currently lacking.

Previous theoretical analyses of the relationships between the
SRDP and STDP rules were mostly based on numerical simula-
tions of model equations on digital computers. Another approach
to neural modeling is via direct emulation of neuronal dynamics
on electronic devices such as complementary metal-oxide-semi-
conductor (CMOS) (27–29) or nanowire circuits (30–32); i.e.,
analog “neuromorphic” computation instead of digital model
simulation. Recently, there has been growing interest in the neu-
romorphic modeling and implementation of the STDP learning
rule using CMOS (32–42) or metal-oxide-metal circuits (43) or
memristor-based nanodevices. Compared to conventional soft-
ware-based computer modeling and simulation approaches, these
neuromorphic electronic circuits have extremely small size (mi-
cro- to nanoscale) and low power requirements (μA to pA current
per unit device with 0.5–5 V power supply) for large scale neural
modeling and high speed simulation purposes. These capabil-
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ities are critical for many real-time, portable/implantable neural
computing applications such as neuroprosthesis, brain-machine
interface, neurorobotics, neuromimetic computation, machine
learning, or neural-inspired adaptive control (44). However, most
such neuromorphic models emulate the temporally asymmetric
STDP characteristic by direct phenomenological curve fitting
(45) instead of biophysical modeling (26). It has been suggested
that nonmechanistic phenomenological modeling of STDP may
lead to many predictive failures especially when applied to other
forms of synaptic plasticity (25). To our knowledge, none of the
phenomenological neuromorphic STDP devices developed so far
can reproduce the SRDP learning rule; hence, they are inflexible
in responding to rate-based stimuli.

Another limitation of previous neuromorphic synaptic plasti-
city models is the difficulty of long term analog storage of sy-
naptic weights using electrical capacitors (32, 46), which are
volatile and bulky to implement on CMOS. Although compact
nonvolatile long term memory of synaptic weights can potentially
be achieved by using digital random-access memories (41) or
advanced floating-gate (47, 48) or memristor technologies (49),
these devices are not readily amenable to the biophysical model-
ing of NMDAR-mediated plasticity in a Hebbian synapse.

Here, we propose an iono-neuromorphic (i.e., biophysically
grounded) CMOS circuit implementation of Hebbian synaptic
plasticity that is capable of capturing both the NMDAR-depen-
dent SRDP and STDP learning rules. Our iono-neuromorphic
model is based on the hypothesis that retrograde endocannabi-
noid signaling and presynaptic NMDAR may provide a second
coincidence detector of pre- and postsynaptic activity in addition
to postsynaptic NMDAR (50–52). To emulate the underlying
biophysical mechanisms, we employ a recently proposed wide-dy-
namic-range iono-neuromorphic CMOS circuit design approach
that allows robust modeling of all types of voltage-dependent
or ligand-gated ion channel and intracellular ionic dynamics
on analog very-large-scale-integrated (aVLSI) circuits (53). We
show that our iono-neuromorphic model readily reproduces LTP
and LTD based on either the SRDP or STDP learning rules
implemented on the same CMOS chip. The proposed iono-neu-
romorphic model of LTP and LTD lends itself readily to long
term storage of synaptic weights in a nonvolatile digital format
that is analogous to the discrete insertion and removal of AMPA
or GABA receptor channels in real neurons, thus circumventing
the limitations of analog memory.

Methods and Results
Iono-Neuromorphic Model of Postsynaptic NMDAR-Dependent LTP
and LTD. Iono-neuromorphic model of NMDA and AMPA channels.
A “learning synapse” circuit model of an excitatory postsynaptic
hippocampal dendritic spine compartment is designed as follows
(Fig. 1A). A set of CMOS building block circuits biased in the
subthreshold regime for robust iono-neuromorphic modeling

[with wide input dynamic range to overcome device mismatch in
subthreshold circuits (44)] are configured to emulate fast AMPA
and slower NMDA channels, as described previously (53). The
output currents are sent to a membrane node circuit that keeps
the membrane potential VMEM near the resting potential VREST
in the absence of stimulation (Fig. 1B). In response to a single
presynaptic stimulation, excitatory IAMPA and INMDA impinge
on the membrane capacitor (CMEM) causing VMEM to generate
an excitatory postsynaptic potential (EPSP) that relaxes towards
VREST at a rate determined by the membrane time constant
τMEM¼CMEM∕gleak (Fig. 1C). Importantly, several discrete AMPA
channels carry excitatory postsynaptic current (EPSC) in parallel,
and each channel is gated by a binary control variable Cn (where
n ¼ 1;2;…;N) that determines whether a particular AMPA chan-
nel is active. Thus, the number of active AMPA channels encodes
the synaptic weight.

NMDA channels—gated by both presynaptic glutamate and
postsynaptic VMEM control over extracellular magnesium block
—have slower dynamics, and encode coincident pre- and postsy-
naptic activities by INMDA amplitude. Calcium influx via INMDA
(generated as its own current ICa

þ2) is integrated on a current-
voltage converter circuit to generate intracellular calcium
(½Caþ2�i) signal (Fig. 1C). The calcium signal in turn activates
downstream circuits that adjust the number of active AMPA
channels (Cn vector) according to a learning rule implemented
by ½Caþ2�i-dependent plasticity circuits.

The iono-neuromorphic synapse design is biologically intuitive
and allows application of experimental manipulations to observe
emergent behaviors. For example, the model is capable of mod-
ifying hippocampal silent synapses expressing only NMDA chan-
nels into expressing AMPA channels following an induction
protocol (54). Additionally, the circuits allow tremendous flexibil-
ity in emulating synapses from various brain structures by simply
tuning a small (1–4) set of parameters such as maximum conduc-
tance or activation dynamics of both excitatory and inhibitory
channels.

Iono-neuromorphic intracellular calcium-mediated plasticity model.
Models of synaptic plasticity posit an important role of calcium
in medicating downstream processing that results in expression of
potentiation or depression of the synaptic weight. The learning
rule implementation underlying on-chip synaptic plasticity is
an adaptation of a biophysical model proposed by Shouval, et al.
(17, 25) that relies on intracellular calcium dynamics to deter-
mine synaptic plasticity. The model computes the change in
synaptic weight (dw) by evaluating:

dw ¼ ηð½Ca�Þ · ðΩð½Ca�Þ − λwÞ; [1]

where w is the present synaptic weight, Ωð½Ca�Þ is the calcium-

Fig. 1. (A) Simple synapse consisting of AMPA and NMDA channels, and calcium. (B) Circuit models of individual elements of the synapse, color coded with (A).
(C) Circuit outputs in response to a presynaptic action potential (AP) input (APPRE). See also Fig. S1.
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dependent update rule, ηð½Ca�Þ is a monotonically increasing
(supralinear) function of ½Caþ2�i that controls the learning rate,
and λ is a “forgetting” constant that assures that the synaptic
weight reverses back from saturation if it is not maintained at
its potentiated or depressed levels.

The Ω function employs LTP and LTD thresholds values (θLTP
and θLTD, respectively) to set potentiation and depression levels
as a function of ½Caþ2�i. By simply changing the θLTP and θLTD
thresholds, several plasticity vs. ½Caþ2�i rules can be realized.
For our purposes, we implemented the SRDP learning rule that
has been observed experimentally in visual cortex and in hippo-
campus (55, 56). The rule postulates that for θLTD < ½Caþ2�i <
θLTP, the synaptic strength will depress; when ½Caþ2�i > θLTP,
the synaptic strength potentiates. It is important to note that this
rule was developed to explain SRDP results which involve long
trains of stimulation that generate a constant ½Caþ2�i level for a
relatively long period of time. This assumption is not true for
STDP protocols.

The Ω and η functions are expressed mathematically using
exponential functions, making them simple to implement using
subthreshold-biased transistors. Thus, it is practical to use aVLSI
technology to incorporate the learning rule into a large number of
synapses. The Ω circuit computes an output signal IΩ as a func-
tion of ½Caþ2�i signal from the calcium circuit (Fig. 2A). The Ω
circuit is split into LTP and LTD sections. A cascade of differen-
tial-pair circuits compare ½Caþ2�i and a threshold (either θLTP or
θLTD) and compute the output current for each section. These
output currents are subtracted from each other, and the resultant
current is added to the naïve synaptic weight represented by
IΩ-CONS. The Ω circuit can be tuned to generate various Hebbian
learning rules as seen in the hippocampus (Fig. 2B), or anti-Heb-
bian learning rules observed in the cerebellum (57). Importantly,
θLTP and θLTD may be modified dynamically via an internal circuit
to implement meta-plasticity (58), allowing synaptic plasticity
over longer time scales in an unsupervised manner.

The η circuit is designed to mimic the calcium-dependent
learning rate irrespective of the direction of plasticity. This circuit
captures the fact that while both LTD and LTP can be induced
using a 900 pulse train, longer stimulation trains are needed to
generate LTD (∼15 min at 1 Hz stimulation) compared to
LTP (9 s at 100 Hz). Because we update the synaptic weight with

enabling discrete AMPA channel circuits to fully turn on or off,
we converted the η circuit into a calcium-dependent digital
Enable signal. This approach allows the neromorphic synapse
to modify its synaptic weight only during induction protocols that
generate calcium influx that accumulates above a putative enable
threshold, θη. The circuit employs a transconductance circuit
with a calcium-dependent bias current IBIAS-Ca, which results
in different charging rates based on a dynamic calcium level
(Fig. 2C) and superlinear behavior of the η function.

The circuit generates an output current Iη proportional to the
difference of ½Caþ2�i and a rest voltage ηREST whenever ½Caþ2�i >
V ηREST

. Iη is converted to a voltage signal V η via a capacitor assur-
ing monotonically increasing output as a function of the induction
protocol. A leak transistor is included to keep V η near V ηREST

for
quiescent activity. V η is sent to a pulse-generator circuit that
'compares V η to the enable threshold θη. The circuit resets itself
whenever it goes HI generating an Enable pulse, and resets for
a period of time Δt (a time period that is not predictable due
to the subthreshold biasing). The circuit therefore signals that
an induction protocol has generated enough calcium to enable
the synapse to update its synaptic weight (Fig. 2D). Because dur-
ing an induction protocol, ½Caþ2�i > V ηREST

for a period of time,
V η can generate several Enable pulses during the induction pro-
tocol, allowing the synapse to update dynamically and then finally
locking in a value when the ½Caþ2�i falls below V ηREST

.
This property is inherent in the model, suggesting that up-

dating the synaptic weight is strongly dependent on the exact
dynamics of the synaptic expression mechanism. In our circuits,
the expression dynamics are a function of ½Caþ2�i according to:

τupdate ∼
θη · Ceta

Iη · ½Ca2þ�
; [2]

where Ceta is the capacitor of the η circuit, and θη is a threshold
voltage of the comparator. This equation suggests that induction
protocols must endure at least τupdate seconds for the synaptic
weight to update in an unsupervised manner. To simulate SRDT,
we set θη to a level that requires calcium levels to remain elevated
for at least several seconds or minutes before the Enable signal is
generated in order to reproduce experimental results (8).

Fig. 2. (A)Ω circuit. Input ½Caþ2�i signal used to compute output current IΩ. (B) IΩ—½Caþ2�i curve parameterized by θLTP and θLTD. (C) η circuit. Input ½Caþ2�i is used
to both set the WR-TCA maximum current and as an input. The integrated Vη is sent to a comparator that generates a digital pulse when Vη > θη. (D) η circuit
output in response to ½Caþ2�i transient.
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Digital storage of synaptic weights for LTP and LTD. In our model,
synaptic weights are encoded iono-neuromorphically by a dis-
crete set of digitally gated AMPA channels controlled by Cn,
the updated synaptic strength. If Cn is “HI” (LO), the nth AMPA
conductance is activated (deactivated) and the synaptic weight is
potentiated (depressed) compared to its previous state. To con-
vert from an analog η and Ω to a digital vector Cn , we set λ ¼ 1,
digitized IΩ using a picoampere A/D converter (59, 60) and
paired the Enable signal from the η circuit to update a W-circuit
(e.g., dw from Eq. 1) following a particular induction protocol.

The W-circuit updates the weight in two steps. First, an asyn-
chronous digital finite state-machine [(FSM), see Fig. S1,
Table S1 for details] uses the digitized Ω signal (DΩ) to compute
future weight vector Cn, which are mapped to the inputs of dedi-
cated D-flipflop (DFF) circuits that control individual AMPA
channels. This vector then waits for an Enable (square pulse)
command from the digitized V η, which causes the Cn vector to
update the synaptic weight, and resets V η back to zero.

The FSM provides a convenient abstraction of multiple non-
linear and interacting cellular and molecular mechanisms
thought to be activated by postsynaptic Caþ2 signal to drive sy-
naptic plasticity; e.g., calcinurin driving LTD (61) or CaMKII
driving LTP (62). The FSM can incorporate an arbitrary update
rule as a function of DΩ. By modifying the ratios of mirrored
IAMPA (see Fig. 1B), the synaptic weight can be varied in a non-
linear way. Interestingly, the inevitable mismatch across transis-
tors due to CMOS process variability (63) provides a natural
method for heterogeneous AMPA conductances across synapses.
Thus the fabrication process may generate synapses with different
maximum synaptic weight that, when applied in a large network,
give rise to interesting neuronal computations.

CMOS prototype. As a proof of concept, the CMOS iono-neuro-
morphic Hebbian synaptic plasticity chip was prototyped using
the AMI 1.5 μm process (Fig. S2A); use of deep-submicron pro-
cesses will further reduce the chip size at a higher cost. Currently,
the chip’s size was 4.6 mm × 4.6 mm with 116 I/O pins, although
the circuits consumed less than 50% of the available area. The
chip consisted of several ion-channel circuits (e.g., AMPA,
NMDA, voltage-gated calcium, etc.), the η and Ω circuits as well
as digital storage circuits, totaling 400 transistors and 10 capaci-
tors for implementation of both the NMDAR-dependent postsy-
naptic plasticity model and the endocannabinoid-dependent
presynaptic plasticity model (see below). The transistor count
reflects the relative complexity of our biophysically grounded
iono-neuromorphic model compared to phenomenological mod-
els. Additional transistors were also needed in our wide-dynamic-
range subthreshold CMOS circuit designs, which effectively
mitigated the effects of transistor mismatch and significantly
improved the robustness of aVLSI implementation (44, 53). The
capacitors occupied the bulk of the chip area as some of them
were relatively large (30 pF) in order to achieve a 1∶1 electronic-
to-biological time scale at nA level currents. The sizes of the
capacitors are comparable to those required in phenomenologi-
cal neuromorphic models. The circuits were interfaced with each
other via external pins so that each circuit could be tested inde-
pendently on a circuit board (Fig. S2B) to ensure proper opera-
tion. The chip consumed on the order of 100 nW of power (on a
5 V power supply) when only the analog circuits were operational
(majority of the time). When undergoing a synaptic plasticity
induction protocol, the activation of the digital portions of the
circuit increased the power consumption only transiently. All
circuits carried out simulations in real biological time.

Emulation of Postsynaptic NMDAR-Dependent SRDP Learning Rule.
The learning synapse circuit was tested using several well known
induction protocols to draw direct comparisons with biological
preparations. We first employed a pairing protocol used to iden-

tify the role of NMDAR-mediated calcium influx on synaptic
plasticity. Similar to experimental protocols, VMEM was voltage
clamped at VREST and the synaptic reversal potential ESYN (−70
and 0 mV, respectively) while presynaptic stimulation was applied
at a rate of 1 Hz. The results reveal differences in INMDA, ICa

þ2,
and Caþ2 accumulation depending on the clamping voltage
(Fig. 3A). Because INMDA consists of Ca and Na ions, its reversal
potential is 0 mV. Therefore, when VMEM is clamped at ESYN,
INMDA is near 0. However, ICA, which has its own reversal poten-
tial ECa ¼ 140 mV, is substantially larger. When VMEM ¼ ESYN,
repeated stimulations resulted in elevated ½Caþ2�i level above
θLTP for a period longer than τupdate and eventually resulted in
potentiation (Fig. 3B).

We next tested SRDP induction protocols aimed at showing
NMDA channel activity as a Hebbian coincidence detector of
pre- and postsynaptic activity and its control of synaptic plasticity.
SRDP protocols assume that the mean AP firing rate is the main
information transfer mode in neural networks, and so employ
trains of stimulations. We used a standard protocol of 900 pulses
at several presynaptic firing rates ranging from low- to high-
frequency stimulations (4). The resultant ½Caþ2�i accumulation
was proportional to the input stimulus frequency such that for
higher frequencies, ½Caþ2�i levels were higher than for lower
frequencies (Fig. 3C). The calcium conversion circuit (Fig. 1B)
saturates at different voltages for different stimulation protocols,
which are monotonically increasing as a function of frequency.
The signals in Fig. 3C are raw signals directly from the calcium
circuit. The Ω circuit was tuned to a standard BCM curve, which
transitioned from LTD to LTP at a calcium level that was elicited
by a 10 Hz stimulus train. The outputs were sent to the W-circuit
and resulted in graded potentiation for presynaptic input rates
>10 Hz, and depression for input rates <10 Hz (Fig. 3D). These
results reproduce experimentally recorded observations.

The results show that classical induction protocols require only
NMDAR-mediated calcium dynamics to express synaptic plasti-

Fig. 3. (A) Synaptic responses to a classical pairing protocol; A significant
calcium current is still present when VMEM is clamped at ESYN leading to larger
calcium influx. (B) Synaptic (top) and somatic VMEM (bottom) represented by
two separate circuits. Synaptic EPSPs prior to an induction protocol failed to
elicit a somatic AP (black signals) from an integrate-and-fire neuron circuit
connected downstream to the synaptic circuit. Following an induction pro-
tocol, the higher synaptic VMEM elicited an AP in the soma (blue signals). This
shows that changing synaptic weights can influence AP firing. (C) Calcium
levels in response to 900 pulses at various frequencies. The y-axis is simulated
½Caþ2�i amplitude measured in volts (scale not shown). (D) Synaptic plasticity
following standard SRDP protocol which reproduces experimental data.
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city. Similar to biological experiments, blocking on-chip NMDAR
activation also blocked rate-based synaptic plasticity.

Emulation of Postsynaptic NMDAR-Dependent STDP Learning Rule.
Recent studies show that when somatic APs back-propagate into
the dendritic arbor and are repeatedly paired with presynaptic
stimulation, they can induce synaptic plasticity depending on
precise arrival sequence (12, 64). Biophysically, STDP appears to
depend on NMDAR-mediated calcium influx, suggesting similar
induction mechanisms as SRDP plasticity. If STDP models as-
sume that maximum calcium levels drive the synaptic plasticity,
the function of maximum ½Caþ2�i driving STDP would be in the
shape of Fig. 4A, with graded increase from −100 ms < Δt <
þ100 ms, and a fast transition in the critical window between
[−5 ms 5 ms] (Fig. 4A). However, experimental STDP results
suggest that there may be two separate systems mediating the
postpre and prepost portions of STDP (23, 24), which should be
modeled as a discontinuity rather than a fast transition between
the lowest depression and highest potentiation levels.

We subjected the learning synapse to an STDP stimulation
protocol as described by Bi and Poo (12). In this protocol, 60 pre-
post or postpre pairings were applied at the synapse at a rate of
1 Hz [or lower (65)]. A standard presynaptic pulse activated the
postsynaptic compartment. A back-propagating AP (bAP) gener-
ated by an integrate-and-fire neuron circuit (66) was sent to the
postsynaptic compartment with a delay Δt of 1–100 ms, with Δt >
0 for prepost stimulations, andΔt < 0 for postpre stimulations. In
response to an STDP pairing, postsynaptic NMDAR-medicated
½Caþ2�i is sent to theΩ and η circuits, and the ½Caþ2�i dynamics are
reflected in both IΩ and V η. Both the presence of glutamate and
the voltage spike (by the backpropagating AP) is required for
NMDA channel activation (and consequent calcium influx). Be-
cause a prepost stimulation should result in potentiation, we
tuned the Ω parameters such that for any Δt > 0, ½Caþ2�i elevated
above both θLTP and θLTD for a brief period of time, but pairings
with increasing Δt generate ½Caþ2�i signal with lower maximum
amplitude (Fig. 4B). In the absence of another pairing, ½Caþ2�i
quickly decreased at a physiological rate to below θLTP, remains
above the θLTD levels for some time, and decreased back to base-
line. Thus, to generate potentiation, the model predicts that
either a downstream mechanism should “lock in” the fact that
½Caþ2�i crossed θLTP (a low-pass filtering effect with a very long
time constant), or that τupdate (Eq. 2) is at the millisecond level.
This fast-acting coincidence detector may be reflected in dendri-
tic ion-channel activities (65, 67), or by downstream CaMKII
autophosphorylation in response to transient calcium elevation
(68). We tuned η circuit’s τupdate to be very short by modifying
θη, and reproduced the LTP portion of STDP window.

For LTD, however, the situation is much more complicated.
For the artificial synapse circuit with only the NMDA channel
as calcium source, STDP protocols did not display abrupt transi-
tion in the calcium level around Δt ∼ 0 (Fig. 4B) after tuning

the activation dynamics of the NMDA channel or modifying the
width of bAP, as suggested previously (17). Moreover, in a model
where ½Ca2þ�i is only generated by NMDA channels, the maxi-
mum ½Ca2þ�i reaches similar values for prepost pairing at +40 ms
as it does for postpre pairings at −10 ms (Fig. 4B). Hence, based
purely on NMDAR-initiated calcium dynamics there should be a
prepost window for LTD, as previously hypothesized (17, 23–25).

If the prepost arrival difference is−10 ms, then the bAP arrives
10 ms before the glutamate, and so by the time the glutamate
binds, VMEM has decayed significantly leading to a smaller frac-
tion of NMDA channel activation. If the prepost arrival timing is
+40 ms, the glutamate has arrived 40 ms before the bAP. With a
binding time constant of 80 ms, some of the glutamate would have
disassociated from the NMDA channels by the time the voltage
spike arrives, leading to a similarly smaller activation of NMDA
channels. Both situations lead to smaller calcium influx. In a mod-
el where only the maximum calcium level determines LTD or
LTP, this result predicts that if LTD occurs at−10 ms timing, then
LTD must occur at the +40 ms timing (due to the approximately
the same maximum calcium level), as it is an element of the
model itself irrespective of exact parameters. This prediction of
an LTD window at +40 ms (or so) has been suggested by
Shouval, et al. (17, 25).

The underlying assumption of most plasticity models is that
prolonged, moderate levels of calcium activate various intracel-
lular phosphatases (such as calcineurin) and lead to LTD. The
dependence on NMDAR activity implies coincident activity, but
the postpre scenario requires another calcium source. Recent
data suggest that voltage-gated L-type calcium channels (CaV-L)
contribute to calcium influx in postsynaptic neurons (69). We
therefore added circuit models of CaV−L channels to the postsy-
naptic compartment, which together with presynaptic-activated
NMDA channels combined to generate different ½Caþ2�i dy-
namics in response to postpre and prepost simulations. However,
calcium influx via CaV-L is small compared with NMDAR-
mediated ICa (69), and its addition was not enough to generate
a large difference in the maximum ½Caþ2�i levels. We added
L-type calcium channels to the postsynaptic neuron to generate
some calcium influx in response to a backpropagating AP, which
could potentially lead to a larger calcium level when the gluta-
mate arrives for postpre pairings. In this scenerio, the calcium
level for a Δt ¼ −10 ms pairing could be larger than a Δt ¼
þ40 ms pairing, leading to the calcium generated by a −10 ms
pairing crossing the LTD threshold, and calcium generated by
a +40 ms pairing not crossing the LTD threshold. However,
L-type calcium current is much smaller than NMDAR-mediated
calcium influx, and so the additional calcium provided by the
L-type channel does not significantly affect the postsynap-
tic ½Caþ2�i.

By using the chip, a purely postsynaptic mechanism of coin-
cidence detection cannot robustly express both LTP and LTD
under both SRDP and STDP protocols with the same model
parameters. The two major discrepancies for the prepost proto-
cols are: (i) θLTP and θLTD must be decreased significantly from
SRDP levels, possibly implying separate downstream sensors of
postsynaptic ½Caþ2�i accumulation; and (ii) the learning rate
τupdate must be modified from operating on the order of seconds
for SRDP to possibly milliseconds to account for STDP. Tuning
the η and Ω circuits allowed modeling of prepost LTP. However,
the model did not generate a single postpre LTD behavior with
the same set of parameters even with the addition of CaV-L,
as discussed previously (17, 23–25). We hypothesize that there
may be a separate bAP-induced suppression of NMDA recep-
tor-mediated EPSCs which sets the spike-timing window for
LTD (64).

Emulation of STDP Learning Rule with Retrograde Endocannabinoid
Signaling. The need for a second coincidence detector beyond

Fig. 4. (A) Maximum ½Caþ2�i levels required during an STDP induction pro-
tocol to accommodate the calcium-control hypothesis. Note the discontinuity
between maximum depression and maximum potentiation in the [−5 ms,
5 ms] window. (B) Maximum ½Caþ2�i levels reached during an STDP protocol
for the simple synapse circuit.

E1270 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1106161108 Rachmuth et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 



www.manaraa.com

the postsynaptic NMDA channel was recently discussed in several
papers (23, 24, 50, 70). A second biophysical coincidence detector
that accounts for postpre LTD may be endogenous cannabinoid
(endocannabinoid) molecules that are released in response to
postsynaptic CaV-L (51, 52, 71, 72) (Fig. 5A). The endocannabi-
noid signal acts as a transsynaptic retrograde messenger and
influences cannabinoid type 1 (CB1) receptors present on presy-
naptic neurons (73). In the most parsimonious model, the coin-
cident activation of CB1 receptors and presynaptic NMDA
autoreceptors results in long term reduction of neurotransmitter
release.

To account for possible coincident detection via retrograde sig-
naling, we designed a new artificial synapse model and included
circuit models of: CaV-L as an additional postsynaptic calcium
source, an endocannabinoid signal, CB1 receptors, presynaptic
NMDA channels, and glutamate release mechanism. Postsynap-
tic CaV-L and NMDA channel circuits were connected in parallel
to a single current-voltage converter circuit to generate post-
synaptic ½Ca2þ�. An endocannabinoid signal (VENDO) with an
output proportional to ½Caþ2�i was sent to the presynaptic neuron
and activated a CB1 signal (VCB1) (Fig. 5B). This signal decayed
back to baseline with first-order dynamics and a time constant of
40 ms. Because coincident presynaptic NMDAR and CB1 activity
is required for a decrease in glutamate release, the presynaptic
NMDAR circuit incorporated an additional subcircuit with inputs
VCB1 and a parameter θCB1 that generated a positive signal when
VENDO > 0. This signal causes VCB1 to decrease from its baseline,
affect INMDA-PRE and thereby increasing ½Caþ2�PRE levels.

Because glutamate is released in discrete vesicles, (a process
that is conceptually similar to activating individual AMPA chan-
nels, for example), we employed a W-circuit with dedicated Ω
(ΩGLU) and η (ηGLU) circuits that had ½Caþ2�PRE as their input.
Similar to the description above for AMPA channels insertion
and removal,ΩGLU and ηGLU were digitized and an FSMwas used
to determine the number of discrete glutamate vesicles released
during the subsequent stimulation. The θη-GLU threshold value
was tuned so that during standard stimulation, the digital ηGLU
circuit generated Enable pulses at a high rate based on Eq.2
(Fig. 5C). Because ½Caþ2�PRE is dynamic, we cannot predict the
τupdate with any degree of certainty. DΩ-GLU was tuned so that low
½Caþ2�PRE levels (indicating no CB1 activity) resulted in a higher
number of glutamate vesicles released. Higher levels of ½Caþ2�PRE

generated low glutamate release. Therefore, the amount of
glutamate released is a (pseudo) stochastic event determined
by ½Caþ2�PRE.

We subjected the new learning synapse to an STDP stimulation
protocol as described above, but used the same values of θLTP,
θLTD, and θη in the postsynapticΩ and η circuits as those in SRDP
simulations. During quiescent presynaptic activity, ½Caþ2�PRE
remains low because L-type channels are inactive and there is no
endocannabinoid signal. During prepost STDP protocols, LTP is
induced by increases in ½Caþ2�i via pairing-specific activation of
postsynaptic NMDAR (and L-type calcium channels) as before.
In the prepost paradigm, the retrograde endocannabinoid signal
resultant from the bAP is behind the presynaptic spike; hence, it
always arrives at the presynaptic terminal when the presynaptic
NMDAR is no longer activated by the presynaptic spike, and
decreases back to rest (with an assumed time constant of 40 ms)
before the next pairing occurs. Because coincident detection at
the presynaptic terminal requires paired activations of presynap-
tic NMDAR and CB1 receptor, the endocannabinoid signal alone
does not affect glutamate release or the induction of LTP during
prepost pairings (Fig. 5D).

In contrast, during postpre pairings ½Caþ2�PRE is modulated by
VENDO and VCB1, and imparts its dynamics on the IΩ-GLU signal.
Because the ΩGLU circuit is biased towards decreasing glutamate
release during postpre pairings, and the ηGLU circuit generates
several Enable signals during a single calcium transient, postpre
pairings probabilistically bias the ΩGLU circuit towards generating
a smaller amount of glutamate release for the imminent presy-
naptic stimulation. This strategy fits nicely with the fact that
dozens of pairings (≈60–100) are required to generate STDP.
During each postpre pairing, we simply decrease the probability
of glutamate release. This smaller glutamate will reduce postsy-
naptic ½Caþ2�i signal via decreased postsynaptic NMDAR activity,
and its summation across the several pairings will cause the
expression of LTD. Furthermore, the probability of releasing low
glutamate decreases with increasing Δt of the pairings. Fig. 5D
shows several runs of the postpre STDP protocol and the resul-
tant postsynaptic calcium signal.

Emulation of SRDP Learning Rule with Retrograde Endocannabinoid
Signaling. For simplicity, we assumed that retrograde endocanna-
binoid signaling is specific to bAP induction of STDP and has

Fig. 5. (A) An improved synapse model including presynaptic circuits of CaV-L, NMDA autoreceptors and CB1 receptors. (B) Signals involved in transsynaptic
communication; bAP; response of L-type VGCC, resulting VENDO and CB1 receptor activity. (C) circuit design used to control glutamate release mechanism. (D)
Chip results showing both LTD and LTP sections of STDP under retrograde endocannabinoid signaling. The blue line represents an average of several runs.
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little or no effects on presynaptic-only induction of SRDP. Thus,
all four induction protocols (low- and high-frequency presynaptic
stimulations, prepost and postpre paired stimulations) can be
easily emulated using the new synaptic model with the same set
of parameter values for both SRDP and STDP protocols.

It is tempting to speculate that retrograde endocannabinoid
signaling might modulate SRDP presynaptically when ½Caþ2�i
becomes sufficiently high during rate-based stimulation, in a
manner similar to our endocannabinoid-based STDP model.
Consistent with this hypothesis, endocannabinoids have been
shown to contribute to the LTD induced by low-frequency stimu-
lation of the Schaffer collateral pathway in hippocampal CA1
neurons (74) and restrict the LTP induced by moderate high-
frequency stimulation or maximum-intensity theta-burst stimula-
tion of the same pathway (75). However, endocannabinoids
did not affect LTP induced by robust and longer high-frequency
stimulation (75). Instead, other studies showed that repetitive
activation of the same pathway induces an endocannabinoid-
mediated heterosynaptic LTD of nearby inhibitory inputs (76),
and that priming these GABAeric receptors facilitates LTP of
excitatory transmission (77, 78). Therefore, the effects of endo-
cannabinoid signaling on SRDP are highly complex and may
involve multiple interacting mechanisms that are not yet fully un-
derstood. Nevertheless, the iono-neuromorphic model presently
proposed should be readily extendable to emulate endocannabi-
noid modulation of rate-based homosynaptic and heterosynaptic
LTP and LTD of excitatory and inhibitory transmission and their
interaction, when the requisite experimental data become more
complete in future.

Discussion
The foregoing demonstrates our successful implementation
and testing of an iono-neuromorphic circuit model of both SRDP
and STDP learning rules on a miniature, low-power CMOS chip.
The power consumption of our device is more than an order of
magnitude lower than that of current memristor devices (which
typically operate in the sub-μA current range) used to implement
the phenomenological STDP rule (49). Our combined use of
analog iono-neuromorphic modeling of NMDAR-dependent
synaptic and intracellular calcium dynamics and retrograde en-
docannabinoid signaling allows robust on-chip simulations of
bidirection LTP and LTD induction based on either the STDP
or SRDP learning rule. The proposed neurally-inspired digital
storage of synaptic weights for long term maintenance of postsy-
naptic LTP and LTD emulating the insertion and removal of
AMPA receptor channels in biological neurons provides an opti-
mal mixed-signal hardware environment for reliable real-time
simulation of Hebbian synaptic plasticity using power-efficient
and compact aVLSI technology. Although not part of the present
chip, a similar mixed-signal approach should be equally applic-
able to the digital implementation of long term maintenance of
endocannabinoid-mediated presynaptic LTD, in that presynaptic
neurotransmitter release is intrinsically quantal in nature and is
up- or downregulated in discrete packets analogous to the dis-
crete insertion/removal of postsynaptic AMPA channels.

In addition to these neurotechnological advances in iono-neu-
romorphic modeling and neural computation, the present work
also has important implications in understanding the mechanisms
of STDP from the perspective of computational neuroscience.
Our simulation results support the notion that a second coinci-
dence detector involving CB1 may be involved in the full expres-
sion of the canonical STDP curve characterized by a prepost LTP
window and a postpre LTD window without a second (prepost)
LTD window, as suggested in several brain systems (50, 79–81).
Clearly, endocannabinoid-dependent model of LTD is only one
of several proposed models (25, 64, 65) that can be implemented
using similar circuits as described here. Two interesting character-
istics of the STDP rule is a dependence of the induction of LTPon

the repetition frequency of prepost pairing (82) and a dominance
of LTP over LTD in STDP integration of triplets or quadruplets
of alternating prepost or postpre activities (83). Our model’s
demonstrated ability in reproducing both the SRDP and STDP
rules is indicative of a frequency dependence of induction of LTP
by STDP. It has been suggested that a triplet learning rule under
certain assumptions can be mapped to a BCM rule (21); hence
the present model relating the STDP and BCM learning rule
biophysically should be compatible with the triplet STDP rule
pheonomenologically. While introducing more complex triplet
curve-fit models including higher dimensional kernels such as
proposed by Pfister and Gerstner (21) might be able to fit both
the STDP and BCM rules, modeling of the actual biophysical pro-
cesses is likely to fit more of the data, though this question will
only be resolved by ongoing research. Although no attempt was
made in this study to reproduce the timing-dependent integration
of triplet and quadruplet stimuli, the relative robustness of the
canonical STDP paring protocol for the calcium-mediated induc-
tion of LTP with a single coincidence detector vis-à-vis the induc-
tion of LTD involving a second coincidence detector is consistent
with a potentiation-dominance effect of STDP. For simplicity, our
model does not include detailed biophysical descriptions of other
synaptic processes (such as postsynaptic metabotropic glutamate
receptors) for LTP and LTD induction and other intracellular
protein signaling cascades involved in their maintenance (10, 26).
These circuit models can be incorporated in future and can be
optimized to generate a more comprehensive and space-efficient
iono-neuromorphic CMOS synaptic plasticity system.

It should be noted that SRDP Hebbian synaptic plasticity rules
are based on correlations of input and output signals with no
feedback. Thus, synaptic modification algorithms follow an unsu-
pervised learning rule. Reward-based and supervised learning
rules, on the other hand, act to optimize some objective function
by reducing error between actual and expected behaviors. These
three learning rules are hypothesized to drive computations in
various brain regions, and interact in an integrative manner (84).
Thus far, unsupervised learning has received the bulk of attention
due to its biophysical plausibility based on NMDAR-dependent
mechanisms in heavily investigated hippocampal circuits. How-
ever, recent modeling studies suggest that the STDP rule may
constitute a supervised learning rule if it is modulated by some
global reward signal (85–88). Thus, both supervised and unsuper-
vised learning can be accomplished by algorithms sharing the
same biophysical substrates for SRDP and STDP Hebbian
learning.

Recent studies have shown that inhibitory GABAergic sy-
napses also undergo long term synaptic plasticity (10, 89). As with
excitatory synaptic plasticity, postsynaptic ½Ca2þ�i plays an impor-
tant role in shaping inhibitory synaptic plasticity. For example,
in neonatal rat hippocampus, calcium current through NMDA
channels leads to LTD of GABAA receptor channels while cal-

Fig. 6. Schematic of inhibitory synapse with a plasticity mechanism similar to
Fig. 1, but includes individually gated GABAA channels.
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cium entering via CaV results in LTP (90). A possible expression
mechanism appears to be the insertion and deletion of individual
GABA channels into postsynaptic membranes (91). Therefore,
similar calcium-dependent inhibitory synaptic plasticity models
may be constructed, but consist of a set of GABA receptors rather
than glutamate receptors (Fig. 6). The expression of inhibitory
synaptic weight adaptation is realized by activating or deactivat-
ing discrete GABA channels in response to ½Ca2þ�i dynamics.
Both excitatory and inhibitory synaptic plasticity can be modeled
by our iono-neuromorphic design approach to significantly en-
hance the computational capacity of the on-chip system. Such
iono-neuromorphic Hebbian learning systems may be applied
to a variety of robotics, pattern recognition, machine learning,
and nonlinear adaptive control problems (92, 93) in a power-
efficient, compact environment.

A potential limitation of aVLSI implementation of iono-
neuromorphic models is the intrinsic sensitivity to mismatch of
CMOS transistor threshold voltage (94), which imposes a major
constraint on circuit performance (63). Such hardware vulner-
ability is mitigated by allowing sufficiently large device area
and the use of wide-dynamic-range circuit designs as proposed

here (44, 53). Interestingly, the STDP algorithm itself can be used
to correct for such circuit imperfections, making aVLSI imple-
mentations of the STDP learning rule relatively robust to device
mismatch (95). Further improvements of iono-neuromorphic
circuit performance include incorporating thermodynamically
equivalent models of ion-channel kinetics (96) in our wide-
dynamic-range circuit designs and the use of advanced CMOS
processes that are optimized for subthreshold circuits operation
with reduced sensitivity to transistor mismatch (97). At the same
time, recent advent of near-nanoscale three-dimensional CMOS
processes and integrated circuit technology will likely further
decrease device dimensions and overall chip sizes in near future
(44, 98). Such neurotechnological advances provide a new dimen-
sion for understanding how the brain works and for transitioning
this knowledge to practical applications (99).
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